

PRO-12MC 4Ω

CUSTOM TRANSDUCER

TECHNICAL SPECIFICATIONS

Nominal diameter	300 mi	m 12 in
Rated impedance		4 Ω
Minimum impedance		4,9 Ω
Power capacity ¹		500 W _{AES}
Program power ²		1000 W
Sensitivity	97 dB 1	W / 1m @ Z _N
Frequency range	(65 - 5.000 Hz
Voice coil diameter	63,5 n	nm 2,5 in
BI factor		15,8 N/A
Moving mass		0,065 kg
Voice coil length		19,5 mm
Air gap height		10 mm
X _{damage} (peak to peak)		40 mm

THIELE-SMALL PARAMETERS3

Resonant frequency, f _s	55 Hz
D.C. Voice coil resistance, R _e	3,6 Ω
Mechanical Quality Factor, Q_{ms}	6,7
Electrical Quality Factor, Q _{es}	0,33
Total Quality Factor, Qts	0,31
Equivalent Air Volume to C _{ms} , V _{as}	54 I
Mechanical Compliance, C _{ms}	$127~\mu m$ / N
Mechanical Resistance, R _{ms}	3,4 kg / s
Efficiency, η ₀	2,7 %
Effective Surface Area, S _d	$0,055 \text{ m}^2$
Maximum Displacement, X _{max} ⁴	7,6 mm
Displacement Volume, V _d	418 cm ³
Voice Coil Inductance, Le	0,7 mH

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

MOUNTING INFORMATION

Overall diameter	312 mm	12,3 in
Bolt circle diameter	294,5 mm	11,6 in
Baffle cutout diameter:		
- Front mount	278 mm	10,9 in
Depth	140 mm	5,5 in
Net weight	5,8 kg	12,8 lb
Shipping weight	6,5 kg	14,3 lb

Notes

- ¹ The power capaticty is determined according to AES2-1984 (r2003) standard.
- ² Program power is defined as power capacity + 3 dB.
- ³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

⁴ The X_{max} is calculated as $(L_{vc} - H_{ag})/2 + (H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.